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Localization-induced coherent backscattering effect in wave dynamics

H. Schomerus, K. J. H. van Bemmel, and C. W. J. Beenakker
Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, 2300 RA Leiden, The Netherlands

~Received 1 September 2000; published 22 January 2001!

We investigate the statistics of single-mode delay times of waves reflected from a disordered waveguide in
the presence of wave localization. The distribution of delay times is qualitatively different from the distribution
in the diffusive regime, and sensitive to coherent backscattering: The probability of finding small delay times
is enhanced by a factor close toA2 for reflection angles near the angle of incidence. This dynamic effect of
coherent backscattering disappears in the diffusive regime.
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I. INTRODUCTION

The two most prominent interference effects arising fro
multiple scattering are coherent backscattering and wave
calization@1–6#. Both effects are related to thestatic inten-
sity of a wave reflected or transmitted by a medium w
randomly located scatterers. Coherent backscattering is
enhancement of the reflected intensity in a narrow c
around the angle of incidence, and is a result of the syst
atic constructive interference in the presence of time-reve
symmetry@4,5#. Localization arises from systematic destru
tive interference, and suppresses the transmitted intensity@6#.

This paper presents a detailed theory of a recently disc
ered@7# interplay between coherent backscattering and lo
ization in adynamicscattering property, the single-mode d
lay time of a wave reflected by a disordered waveguide. T
single-mode delay time is the derivativef85df/dv of the
phasef of the wave amplitude with respect to the frequen
v. It is linearly related to the Wigner-Smith delay times
scattering theory@8–10#, and is the key observable of rece
experiments on multiple scattering of microwaves@11# and
light waves@12#. Van Tiggelen,et al. @13# developed a sta
tistical theory for the distribution off8 in a waveguide ge-
ometry~where angles of incidence are discretized as mod!.
Although the theory was worked out mainly for the case
transmission, the implications for reflection are that the d
tribution P(f8) does not depend on whether the detec
moden is the same as the incident modem or not. Hence it
appears that no coherent backscattering effect exists
P(f8).

What we will demonstrate here is that this is true only
wave localization may be disregarded. Previous stud
@11,13# dealt with the diffusive regime of waveguide lengt
L below the localization lengthj. ~The localization length in
a waveguide geometry isj.Nl, with N the number of
propagating modes andl the mean free path.! Here we con-
sider the localized regimeL.j ~assuming that also the ab
sorption lengthja.j). The distribution of reflected intensit
is insensitive to the presence or absence of localization,
ing given in both regimes by Rayleigh’s law. In contrast, w
find that the delay-time distribution changes markedly as
enters the localized regime, decaying more slowly for la
uf8u. Moreover, a coherent backscattering effect appe
For L.j the peak ofP(f8) is higher forn5m than forn
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Þm by a factor which is close toA2, the precise factor being
A23(4096/1371p)51.35.

We also consider what happens if time-reversal symme
is broken, by some magneto-optical effect. The coher
backscattering effect disappears. However, even fornÞm,
the delay-time distribution for preserved time-reversal sy
metry is different than for broken time-reversal symmet
This difference is again only present forL.j, and vanishes
in the diffusive regime.

The plan of this paper is as follows: In Sec. II we spec
the notion@11# of the single-mode delay timef8, relate it to
the Wigner-Smith delay times, and review the results@13#
for the diffusive regime, extending them to include ballis
corrections. This section also contains the random-ma
formulation for the localized regime, that provides the ba
for our calculations, and includes a brief discussion of
conventional coherent backscattering effect in the static
tensity I. Section III presents the calculation of the joint di
tribution of f8 andI. We compare our analytical theory wit
numerical simulations, and give a qualitative argument
the dynamic coherent backscattering effect. The role of
sorption is discussed, as well as the effect of broken tim
reversal symmetry. Details of the calculation are delegate
the Appendixes.

II. DELAY TIMES

A. Single-mode delay times

We consider a disordered medium~mean free pathl ) in a
waveguide geometry~lengthL), as depicted in Fig. 1. There
are N@1 propagating modes at frequencyv, given by N
5pA/l2 for a waveguide with an opening of areaA. The
wave velocity isc, and we consider a scalar wave~disregard-
ing polarization! for simplicity. In the numerical simulations
we will work with a two-dimensional waveguide of widthW,
whereN52W/l.

We study the dependence of the reflected wave amplit

r nm5AIeif ~1!

on the frequencyv. The indicesn andm specify the detected
and incident mode, respectively.~We assume single-mod
excitation and detection.! Here I 5ur nmu2 is the intensity of
the reflected wave in the detected mode for unit incid
©2001 The American Physical Society05-1



r
s

le

rix

ish

on
d

e
w
f

ex

a

s-

e

le

ish-

n

rin
ud

uid

SCHOMERUS, van BEMMEL, AND BEENAKKER PHYSICAL REVIEW E63 026605
intensity, and characterizes the static properties of the
flected wave. Dynamic information is contained in the pha
derivative

f85
df

dv
, ~2!

which has the dimension of a time and is called the sing
mode delay time@11,13#. The intensityI and the delay time
f8 can be recovered from the product of reflection mat
elements

r5r nm~v1 1
2 dv!r nm* ~v2 1

2 dv!, ~3!

evaluated at two nearby frequenciesv6 1
2 dv. To leading

order in the frequency differencedv one has

r5I ~11 idvf8!⇒I 5 lim
dv→0

Rer, f85 lim
dv→0

Im r

dvI
.

~4!

We seek the joint distribution functionP(I ,f8) in an en-
semble of different realizations of disorder. We distingu
between the diffusive regime whereL is small compared to
the localization lengthj.Nl, and the localized regime
where L*j. Localization also requires that the absorpti
length ja*j. We will contrast the case of excitation an
detection in two distinct modesnÞm with the equal-mode
casen5m. Although we mainly focus on the optically mor
relevant case of preserved time-reversal symmetry, we
also discuss the case of broken time-reversal symmetry
comparison. These two cases are indicated by the ind
b51 and 2, respectively.

B. Relation to Wigner-Smith delay times

In the localized regime (j!L,ja) we can relate the
single-mode delay timef8 to the Wigner-Smith@8–10# de-
lay times t i , with i 51, . . . ,N. The t i ’s are defined for a
unitary reflection matrixr ~composed of the elementsr nm);
hence they require the absence of transmission and of
sorption. One then has

FIG. 1. Sketch of a waveguide containing a randomly scatte
medium and illuminated by a monochromatic plane wave. We st
the frequency dependence of the phasef of the reflected wave
amplitude in a single speckle, corresponding to a single waveg
mode. The derivativef85df/dv is the single-mode delay time.
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2 ir †
dr

dv
5U† diag~t1 , . . . ,tN!U, ~5a!

2 ir *
drT

dv
5V† diag~t1 , . . . ,tN!V, ~5b!

with U andV unitary matrices of eigenvectors. In the pre
ence of time-reversal symmetryr is a symmetric matrix;
henceV5U in this case.

For smalldv we can expand

r ~v6 1
2 dv!5VTU6 1

2 idvVT diag~t1 , . . . ,tN!U. ~6!

Inserting this into Eq.~3! and comparing with Eq.~4! yields
the relations

f85Re
A1

A0
, I 5uA0u2, Ak5(

i
t i

kuiv i . ~7!

We have abbreviatedui5Uim and v i5Vin . In the special
casen5m, the coefficientsui and v i are identical in the
presence of time-reversal symmetry.

The distribution of the Wigner-Smith delay times in th
localized regime was determined recently@14#. In terms of
the ratesm i51/t i it has the form of the Laguerre ensemb
of random-matrix theory,

P~$m i%!})
i , j

um i2m j ub)
k

Q~mk!e
2g(bN122b)mk, ~8!

where the step functionQ(x)51 for x.0 and 0 forx,0.
The parameterg is defined by

g5a l /c, ~9!

with the coefficient a5p2/4 or 8/3 for two- or three-
dimensional scattering, respectively. Equation~8! extends
the N51 result of Refs.@15–17# to anyN.

The matricesU andV in Eq. ~6! are uniformly distributed
in the unitary group. They are independent forb52, while
U5V for b51. In the large-N limit the matrix elements
become independent Gaussian random numbers with van
ing mean and variance 1/N. Hence

^ui&5^v i&50, ^uui u2&5^uv i u2&5N21, ~10!

with ui5v i for n5m andb51. Corrections to this Gaussia
approximation are of order 1/N.

C. Diffusion theory

The joint probability distributionP(I ,f8) in the diffusive
regimel !L!j was derived in Refs.@11,13#,

Pdiff~ I ,f8!5Q~ I !~ I /p Ī 3!1/2e2I / Ī ~Qf̄82!21/2

3expS 2
I

Ī

~f82f̄8!2

Qf̄82 D , ~11!
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LOCALIZATION-INDUCED COHERENT . . . PHYSICAL REVIEW E 63 026605
with constantsĪ , f̄8, andQ. It has the same form for trans
mission and reflection, the only difference being the dep
dence of the constants on the system parameters. Her
focus on the case of reflection, because we are conce
with coherent backscattering.

From the joint distribution function@Eq. ~11!#, for the
intensity one obtains the Rayleigh distribution

Pdiff~ I !5
1

Ī
exp~2I / Ī !. ~12!

HenceĪ is the mean detected intensity per mode. It is giv
by @18#

Ī 5
1

N
~11db1dnm!, ~13!

assuming unit incident intensity. The factor of 2 enhan
ment in the casen5m is the static coherent backscatterin
effect mentioned in Sec. I, which exists only in the prese
of time-reversal symmetry (b51). Equations~12! and ~13!
remain valid in the localized regime, since they are de
mined by scattering on the scale of the mean free p
HenceL@ l is sufficient for static coherent backscatterin
and it does not matter whetherL is small or large compared
to j.

By integrating overI in Eq. ~11! one arrives at the distri
bution of single-mode delay times@11,13#,

Pdiff~f8!5
Q

2f̄8
@Q1~f8/f̄821!2#23/2. ~14!

Hencef̄8 is the mean delay time, whileAQ sets the relative
width of the distribution. These constants are determined
the correlator@11,13#

C125
^r nm~v1dv!r nm* ~v!&

^r nm~v!r nm* ~v!&

511 i f̄8dv2 1
2 f̄82~Q11!~dv!2. ~15!

Diffusion theory gives

f̄852gs/3, Q52s/5. ~16!

Hereg is given by Eq.~9!. We have defined

s5a8L/ l , ~17!

where the numerical coefficienta852/p, 3/4 for two- and
three-dimensional scattering.~The corresponding result forQ
given in Ref.@13# is incorrect.!

Diffusion theory predicts that the distribution of dela
times @Eq. ~14!#, as well as the values of the constantsf̄8
andQ, do not depend on the choicen5m or nÞm ~and also
not on whether time-reversal symmetry is preserved or n!.
Hence there is no dynamic effect of coherent backscatte
in the diffusive regime.
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D. Ballistic corrections

The expressions for the constantsĪ , f̄8, and Q given
above are valid up to corrections of orderl /L. Here we give
more accurate formulas that account for these ballistic c
rections.~We need these to compare with numerical simu
tions.! We determine the ballistic corrections forQ and f̄8
by relating the dynamic problem to a static problem w
absorption.~This relationship only works for the mean.
cannot be used to obtain the distribution@19#.! The mean
total reflectivity

ā511x2A2x1x2 coth@sA2x1x21arcosh~11x!#
~18!

for absorptiona8x per mean free path was evaluated in R
@20#. @Herea8 is the same constant as in the definition ofs;
see Eq.~17!.# We identify C125ā(x)/ā(0) by analytical
continuation to an imaginary absorption ratex52 idvg.
Expanding inx to second order, we find

f̄85g
s~312s!

3~11s!
, Q5

8s3128s2130s115

5~2s13!2
. ~19!

E. Numerical simulation

The validity of diffusion theory was tested in Refs.@11–
13# by comparison with experiments in transmission. In F
2 we show an alternative test in reflection, by comparis
with a numerical simulation of scattering of a scalar wave
a two-dimensional random medium.~We assume time-
reversal symmetry.! The reflection matricesr (v6 1

2 dv) are
computed by applying the method of recursive Green fu
tions @21# to the Helmholtz equation on a square lattice~lat-
tice constanta). The widthW5100a and the frequencyv
51.4c/a are chosen such that there areN550 propagating
modes. The mean free pathl 514.0a is found from the for-
mula @22# tr rr †5Ns(11s)21 for the reflection probability.
The corresponding localization lengthj5NL/s51100a.
The parameterg546.3a/c is found from Eq.~19! by equat-

FIG. 2. Distribution of the single-mode delay timef8 in the
diffusive regime. The result of numerical simulation~data points!
with N550 propagating modes is compared to the prediction@Eq.
~14!# of diffusion theory~solid curve!. There is no difference be
tween the casen5m of equal-mode excitation and detection~open
circles! and the casenÞm of excitation and detection in distinc
modes~full circles!.
5-3
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ing ^f8&5f̄8. ~This value ofg is somewhat larger than th
value g5p2l /4c534.5a/c expected for two-dimensiona
scattering, as a consequence of the anisotropic disper
relation on a square lattice.! We will use the same set o
parameters later in this paper in the interpretation of the
sults in the localized regime. Our numerical results confi
that in the diffusive regime the distribution of delay timesf8
does not distinguish between excitation and detection in
tinct modes (nÞm, full circles! and identical modes (n5m,
open circles!.

III. DYNAMIC COHERENT BACKSCATTERING EFFECT

A. Distinct-mode excitation and detection

We now calculate the joint probability distribution func
tion P(I ,f8) of intensityI and single-mode delay timef8 in
the localized regime, for the typical casenÞm of excitation
and detection in two distinct modes. We assume a prese
time-reversal symmetry (b51), leaving the case of broke
time-reversal symmetry for the end of this section.

It is convenient to work momentarily with the weighte
delay timeW5f8I and to recoverP(I ,f8) from P(I ,W) at
the end. The characteristic function

x~p,q!5^e2 ipI 2 iqW& ~20!

is the Fourier transform ofP(I ,W). The averagê •••& is
over the vectorsu andv and over the set of eigenvalues$t i%.
The average over one of the vectors, sayv, is easily carried
out, because it is a Gaussian integration. The result is a
terminant:

x~p,q!5^det~11 iH /N!21&, ~21a!

H5pu* uT1 1
2 q~ ū* uT1u* ūT!. ~21b!

The Hermitian matrixH is a sum of dyadic products of th
vectors u and ū, with ūi5uit i , and hence has only two
non-vanishing eigenvaluesl1 and l2 . Some straightfor-
ward linear algebra gives

l65 1
2 ~qB11p6A2pqB11q2B21p2!, ~22!

where we have defined the spectral moments

Bk5(
i

uui u2t i
k . ~23!

The resulting determinant is

det~11H/N!215~11l1 /N!21~11l2 /N!21; ~24!

hence

x~p,q!5K F11
ip

N
1

iq

N
B11

q2

4N2
~B22B1

2!G21L .

~25!

An inverse Fourier transform, followed by a change of va
ables fromI,W to I,f8, gives
02660
ion

-

s-

ed

e-

-

P~ I ,f8!5Q~ I !~N3I /p!1/2e2NI

3K ~B22B1
2!21/2expS 2NI

~f82B1!2

B22B1
2 D L .

~26!

The average is over the spectral momentsB1 andB2, which
depend on theui ’s andt i ’s via Eq. ~23!.

The calculation of the joint distributionP(B1 ,B2) is pre-
sented in Appendix A. The result is

P~B1 ,B2!5Q~B1!Q~B2!expS 2
NB1

2

B2
D

3FB1
2gN3

B2
4 ~B21gN2B1!expS 2

2gN

B1
D

2
g3N5

4B2
5 ~2B2

224B1
2B2N1B1

4N2!EiS 2
2gN

B1
D G ,

~27!

where Ei(x) is the exponential-integral function. The distr
butionP(I ,f8) follows from Eq.~26! by integrating overB1
andB2 with weight given by Eq.~27!.

Irrespective of the distribution ofB1 and B2, from Eq.
~26! we recover the Rayleigh law@Eq. ~12!# for the intensity
I. The distributionP(f8)5*0

`d IP(I ,f8) of the single-mode
delay time takes the form

P~f8!5E
0

`

dB1E
0

`

dB2

P~B1 ,B2!~B22B1
2!

2~B21f8222B1f8!3/2
. ~28!

In Fig. 3 this distribution is compared with the result of
numerical simulation of a random medium as in Sec. II
but now in the localized regime. The same value forg was
used as in Fig. 2, making this comparison a parameter-
test of the theory.~Note thatg alone determines the comple
distribution function in the localized regime, in contrast

FIG. 3. Distribution of the single-mode delay timef8 in the
localized regime. The results of numerical simulations withN
550 propagating modes~open circles forn5m, full circles for n
Þm) are compared to the analytical predictions. The curve for d
ferent incident and detected modesnÞm is obtained from Eqs.~27!
and~28!. The curve forn5m is calculated from Eqs.~29! and~30!.
The same value forg is used as in the diffusive regime~Fig. 2!.
5-4
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LOCALIZATION-INDUCED COHERENT . . . PHYSICAL REVIEW E 63 026605
the diffusive case where two parameters are required.! The
numerical data agree very well with the analytical predictio

B. Equal-mode excitation and detection

We now turn to the casen5m of equal-mode excitation
and detection, still assuming that time-reversal symmetr
preserved. Sinceui5v i , we now have

f85Re
C1

C0
, I 5uC0u2, Ck5(

i
t i

kui
2 . ~29!

The joint distribution functionP(C0 ,C1) of these complex
numbers can be calculated in the same way asP(B1 ,B2). In
Appendix C we obtain

P~C0 ,C1!}exp~2NuC0u2/2!E
0

`

dss2e2s

3S 11
uC1u2s2

g2N2
2

2s

gN
ReC0C1* D 25/2

. ~30!

The corresponding distribution functionP(f8) is also plot-
ted in Fig. 3, and compared with the results of the numer
simulation. Good agreement is obtained, without any f
parameter.

C. Comparison of both situations

Comparing the two curves in Fig. 3, we find a strikin
difference between distinct-mode and equal-mode excita
and detection: The distribution forn5m displays an en-
hanced probability of small delay times. In the vicinity of th
peak, both distributions become very similar when the de
times fornÞm are divided by a scale factor of aboutA2. In
the limit N→` ~see Sec. III D!, the maximal value
P(fpeak8 )5A2/pN3g2 for n5m is larger than the maximum
of P(f8) for nÞm by a factor

Pn5m~fpeak8 !

PnÞm~fpeak8 !
5A23

4096

1371p
51.35. ~31!

Correspondingly, the probability to find very large del
times is reduced forn5m. This is reflected by the
asymptotic behavior

P~f8!;
gN3/2

f82 H ~2p!21/2 for n5m

Ap/4 for nÞm.
~32!

The enhanced probability of small delay times forn5m
is the dynamic coherent backscattering effect mentione
Sec. I. The effect requires localization, and is not observe
the diffusive regime.

D. Limit N\`

The results presented so far assumeN@1, but retain
finite-N corrections of orderN21/2. ~Only terms of order 1/N
and higher are neglected.! It turns out that the asymmetry o
02660
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P(f8) for positive and negative values off8 is an effect of
orderN21/2. The asymmetry is hence captured faithfully b
our calculation. We now consider how the asymmetry ev
tually disappears in the limitN→`.

For distinct modesnÞm, the spectral moments scale a
B1;gN andB2;g2N3. With f8;gN3/2, one finds thatB1
can be omitted to orderN21/2 in Eq. ~28!. One obtains the
symmetric distribution

P~f8!5E
0

`

dB2

P~B2!B2

2~B21f82!3/2
~33!

plotted in Fig. 4.
For identical modesn5m, observe that the quantitiesC0

and C1 become mutually independent in the large-N limit:
The cross-term (gN)21 ReC0C1* in Eq. ~30! is of relative
orderN21/2 becauseC0;N21/2 andC1;gN. Hence, to or-
der N21/2, the distribution factorizes, P(C0 ,C1)
5P(C0)P(C1). The distribution ofC0 is a Gaussian,

P~C0!5
N

2p
exp~2NuC0u2/2!, ~34!

as a consequence of the central-limit theorem, and

P~C1!}E
0

`

dss2e2sS 11
uC1u2s2

g2N2 D 25/2

. ~35!

The resulting distribution off85Re(C1 /C0) is also plotted
in Fig. 4.

The dynamic coherent backscattering effect persists in
limit N→`, it is therefore not due to finite-N corrections.
The peak heights differ by the factor given in Eq.~31!.

FIG. 4. Distribution of the single-mode delay timef8 in the
localized regime for preserved time-reversal symmetry, in the li
N→`. In this limit P(f8) becomes symmetric for positive an
negative values off8. Compared are the result fornÞm @Eqs.~33!
and ~A16!# and n5m @Eqs. ~29!, ~34!, and ~35!#. The distribution
for n5m falls on top of the distribution fornÞm when f8 is
rescaled by a factor 1.35~dashed curve, almost indistinguishab
from the solid curve fornÞm).
5-5
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E. Interpretation in terms of large fluctuations

In order to explain the coherent backscattering enhan
ment of the peak ofP(f8) in more qualitative terms, we
compare Eq.~29! for n5m with the corresponding relation
@Eq. ~7!# for nÞm.

The factorization of the joint distribution functio
P(C0 ,C1) discussed in Sec. III D can be seen as a con
quence of the high density of anomalously large Wign
Smith delay timest i in the Laguerre ensemble@Eq. ~8!#. The
distribution of the largest timetmax5maxiti follows from the
distribution of the smallest eigenvalue in the Laguerre
semble, calculated by Edelman@23#. It is given by

P~tmax!5
gN2

tmax
2

exp~2gN2/tmax!. ~36!

As a consequence, the spectral momentC1 is dominated by a
small number of contributionsui

2t i ~often enough by a single
one, say with indexi 51), while C0 can be safely approxi
mated by the sum over all remaining indicesi ~say, iÞ1).
The same argument applies also to the spectral momentAk
which determine the delay-time statistics fornÞm; hence
the distribution functionP(A0 ,A1) factorizes as well.

The quantitiesA0 andC0 have a Gaussian distribution fo
large N, because of the central-limit theorem, withP(C0)
given by Eq.~34! and

P~A0!5
N

p
exp~2NuA0u2!. ~37!

It then becomes clear that the main contribution to the
hancement@Eq. ~31!# of the peak height, namely, the facto
of A2, has the same origin as the factor of 2 enhancemen
the mean intensityĪ . More precisely, the relationP(A05x)
52 P(C05A2x) leads to a rescaling ofP(I ) for n5m by a
factor of 1/2 and to a rescaling ofP(f8) by a factor ofA2.
The remaining factor of 4096/1371p50.95 comes from the
difference in the distributionsP(A1) andP(C1). It turns out
that the distribution

P~A1!5E
0

`

ds
1

4pgN

s2

~41uA1 /gNu2s2!3

3@e2s~64132s112s21s3!23s2 Ei~2s!#

~38!

~derived in Appendix D! is very similar toP(C1) given in
Eq. ~35!; hence the remaining factor is close to unity.

The larget i ’s are related to the penetration of the wa
deep into the localized regions and are eliminated in the
fusive regimeL&j. In Sec. III F we compare the localize
and diffusive regimes in more detail.
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F. Localized vs diffusive regime

Comparison of Eqs.~11! and~26! shows that the two joint
distributions ofI andf8 would be identical if statistical fluc-
tuations in the spectral momentsB1 andB2 could be ignored.
The correspondences are

B1↔f̄8, B22B1
2↔Qf̄82. ~39!

However, the distributionP(B1 ,B2) is very broad~see Fig.
5!, so that fluctuations cannot be ignored. The most probabl
values are

B1
typical.gN, B2

typical.g2N3, ~40!

but the mean valueŝB1&,^B2& diverge—demonstrating the
presence of large fluctuations. In the diffusive regimeL&j
the spectral momentsB1 and B2 can be replaced by thei
ensemble averages, and the diffusion theory@11,13# is recov-
ered.~The same applies if the absorption lengthja&j.!

The large fluctuations inB1 and B2 directly affect the
statistical properties of the delay timef8. We compare the
distribution @Eq. ~28!# in the localized regime~Fig. 3! with
the result@Eq. ~14!# of diffusion theory~Fig. 2!. In the local-
ized regime the valuefpeak8 .B1

typical at the center of the pea
of P(f8) is much smaller than the width of the peakDf8
.(B2

typical)1/2.fpeak8 (j/ l )1/2. This also holds in the diffusive

regime, wherefpeak8 5f̄8 andDf8.fpeak8 (L/ l )1/2. However,
the mean̂ f8&5^B1& diverges forP, but is finite ~equal to
f̄8) for Pdiff . For largeB2 one has, asymptotically,P(B2)

; 1
4 Ng3/2ApB2

23/2. As a consequence, in the tailsP(f8)
falls off only quadratically@see Eq.~32!#, while in the diffu-
sive regimePdiff(f8); 1

2 Qf̄82uf8u23 falls off with an in-
verse third power.

G. Role of absorption

Although absorption causes the same exponential de
of the transmitted intensity as localization, this decay is o
quite different, namely, an incoherent, nature. The stro
fluctuations in the localized regime disappear as soon as
absorption lengthja drops below the localization lengthj,
because long paths which penetrate into the localized reg

FIG. 5. Distributions ofB̃15B1 /gN and B̃25B2 /g2N3. The
analytic prediction from Eq.~27! @for explicit formulas see Eqs
~A15! and ~A16!# is compared to the result of a numerical simul
tion of a Laguerre ensemble withN550.
5-6
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are suppressed by absorption. In this situation one sh
expect that the results of diffusion theory are again va
even forL*j. This expectation is confirmed by our nume
cal simulations.~We do not know how to incorporate absor
tion effects into our analytical theory.!

In Fig. 6 we plot the delay-time distribution for two va
ues of the absorption lengthja,j and one valueja.j, both
for equal-mode and distinct-mode excitation and detect
The length of the waveguide isL54.1j. The result for
strong absorption withja50.11j is very similar to Fig. 2.
Irrespective of the choice of the detection mode, the data
be fitted to prediction~14! of diffusion theory. The plot for
ja50.47j shows that the dynamic coherent backscatter
effect slowly sets in when the absorption length becom
comparable to the localization length. The data also dev
from the prediction of diffusion theory. The full factor@Eq.
~31!# between the peak heights quickly develops as soo

FIG. 6. Single-mode delay-time distributionP(f8) in the pres-
ence of absorption. The data points are the result of a nume
simulation of a waveguide with lengthL54.5j. Open circles are for
equal-mode excitation and detectionn5m, and full circles for the
case of distinct modesnÞm. In the upper panel~with ja,j), the
data are compared to the prediction@Eq. ~14!# of diffusion theory.
In the lower panel we compare with the predictions@Eqs. ~27!–
~30!# of random-matrix theory.
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ja exceedsj, as can be seen from the data forja52.1j.
Moreover, these data can already be fitted to the predict
of random-matrix theory, withg'53.2a/c. ~The valueg
546.3a/c of Sec. II E is reached when absorption is furth
reduced.!

H. Broken time-reversal symmetry

The caseb52 of broken time-reversal symmetry is les
important for optical applications, but has been realized
microwave experiments@24–26#. There is now no difference
betweenn5m and nÞm. The matricesU and V have the
same statistical distribution as for the case of preserved ti
reversal symmetry. Hence, by following the steps of S
III A, we arrive again at Eq.~26!, with spectral momentsBk
as defined in Eq.~23!. Their joint distribution has now to be
calculated from Eq.~8! with b52. This calculation is carried
out in Appendix B. The result is

P~B1 ,B2!5
2gN3B1

2

B2
3

exp~2NB1
2/B222gN/B1!. ~41!

The distribution of single-mode delay timesP(f8) is given
by Eq. ~28!, with the functionP(B1 ,B2). We plot P(f8) in
Fig. 7, and compare it to the case of preserved time-reve
symmetry. The distribution is rescaled by about a factor o
toward larger delay times when time-reversal symmetry
broken. This can be understood from the fact that the
evant length scale, the localization length, is twice as la
for broken time-reversal symmetry (j52NL/s, while j
5NL/s for preserved time-reversal symmetry!.

IV. CONCLUSION

We have presented a detailed theory, supported by
merical simulations, of a recently discovered@7# coherent
backscattering effect in the single-mode delay times o
wave reflected by a disordered waveguide. This dynamic
fect is special because it requires localization for its ex
tence, in contrast to the static coherent backscattering e
in the reflected intensity. The dynamic effect can be und
stood from the combination of the static effect and the la

al

FIG. 7. Comparison of the single-mode delay-time distributio
for preserved and broken time-reversal symmetry. The numbe
propagating modes isN550. The curves are calculated from E
~28!, with P(B1 ,B2) given by Eq. ~27! (b51) or Eq. ~41! (b
52).
5-7
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fluctuations in the localized regime.
In the diffusive regime there is no dynamic cohere

backscattering effect: The distribution of delay times is u
affected by the choice of the detection mode and the p
ence or absence of time-reversal symmetry. The effect
disappears when the absorption length is smaller than
localization length. In both situations the large fluctuatio
characteristic of the localized regime are suppressed.

Existing experiments on the delay-time distributio
@11,12# verified the diffusion theory@13#. The theory for the
localized regime presented here awaits experimental ve
cation.
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APPENDIX A: JOINT DISTRIBUTION
OF B1 AND B2 FOR bÄ1

We calculate the joint probability distribution functio
P(B1 ,B2) of the spectral momentsB1 andB2, defined in Eq.
~23!, which determineP(I ,f8) from Eq. ~26!. We assume
preserved time-reversal symmetry (b51). Since Bk

5( i uui u2m i
2k , we have to average over the wave functi

amplitudesui , which are Gaussian complex numbers w
zero mean and variance 1/N, and the ratesm i which are
distributed according to the Laguerre ensemble@Eq. ~8!# with
b51. This Laguerre ensemble is represented as the ei
values of anN3N Hermitian matrixW†W, whereW is a
complex symmetric matrix with the Gaussian distribution

P~W!}exp@2g~N11!tr W†W#. ~A1!

The calculation is performed neglecting corrections of or
1/N, so that we are allowed to replaceN11 by N. The mea-
sure is

dW5)
i , j

d ReWi j d Im Wi j)
i

d ReWii d Im Wii .

~A2!

1. Characteristic function

In the first step we expressP(B1 ,B2) by its characteristic
function,

P~B1 ,B2!5
1

~2p!2E2`

`

dpE
2`

`

dqeipB11 iqB2x~p,q!,

~A3!

x~p,q!5K )
l 51

N

expF2 i uul u2S p

m l
1

q

m l
2D G L , ~A4!

and average over theul ’s:
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x~p,q!5K )
l 51

N S 11 i
p

m lN
1 i

q

m l
2N

D 21L
5K det~W†W!2

det@~W†W!21 ip~W†W!/N1 iq/N#
L .

~A5!

We have expressed the product over eigenvalues as a ra
determinants. We write the determinant in the denomina
as an integral over a complex vectorz:

x~p,q!}E dWE dzexp@2gN tr W†W#det~W†W!2

3exp$2z†@~W†W!21 ip~W†W!/N1 iq/N#z%.

~A6!

This integral converges becauseW†W is positive definite.

2. Parametrization of the matrix W

Now we choose a parametrization ofW which facilitates a
stepwise integration over its degrees of freedom. The dis
bution of W is invariant under transformationsW→UTWU,
with any unitary matrixU. Hence we can choose a basis
which z points in direction 1, and writeW in block form:

W5S a xT

x X D . ~A7!

Here a is a complex number. For any (N21)-dimensional
vectorx we can use another unitary transformation on theX
block after whichx points in direction 2. ThenW is of the
form

W5S a x 0T

x b yT

0 y Y
D , ~A8!

with the real numberx5uxu. In this parametrization

~W†W!115uau21x2,

@~W†W!2#115~ uau21x2!21x2y21x2ua1b* u2,

detW5@a~b2yTY21y!2x2#detY,

tr W†W5uau21ubu212x212y21tr Y,

d W5d2a d2bdx dy dY,

with y5uyu. A suitable transformation onY allows one to
replace the termyTY21y by y2(Y21)11.

For this parametrization ofW, the integrand in Eq.~A6!
depends on the vectorsx, y, andz only by their magnitudes
x, y, and z5uzu. Hence we can replacedx→x2N23dx, dy
→y2N25dy, anddz→z2N21dz.
5-8
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3. Integration

The integrand in Eq.~A6! involvesz, p, andq in the form

exp†2z2~@~W†W!2#111 ip~W†W!11/N1 iq/N!‡.
~A9!

It is convenient to pass back toP(B1 ,B2) by Eq. ~A3!, be-
cause integration overp andq gives delta functions:

d@B12z2~ uau21x2!/N#d~B22z2/N!

5
1

B2
d~B1 /B22uau22x2!d~B22z2/N!. ~A10!

Subsequent integration overz results in

P~B1 ,B2!}E d2ad2bdxdyx2N23y2N25B2
N22d

3~B1 /B22uau22x2!@c0

3uab2x2u414c2uau2y4uab2x2u21c4uau4y8#

3expF2NB2S B1
2

B2
2

1x2y21x2ua* 1bu2D
22gNy2G . ~A11!

Here we omitted a termgN(uau21ubu212x2) in the expo-
nent, because it is of order 1/N, as we shall see later. Fu
thermore, we denoted

cm5
^udetYu4u~Y21!11um&

^udetYu4&
. ~A12!

These coefficients will be calculated later, with the resu
c051, c252g, and c454g2. Integration overy yields for
the terms proportional to cm the factors (B2x2

12g)2m2N12, which can be combined with the facto
(B2x2)N22, giving, to order 1/N @we anticipateg/B2x2

5O(1/N)#,

~B2x2!N22

~B2x212g!N221m
→~B2x2!2m expS 2

2gN

B2x2D . ~A13!

We introduce a new integration variable byb85b1a* .
So farP(B1 ,B2) is reduced to the form

P~B1 ,B2!}E d2ad2b8dxxd~B1 /B22uau22x2!

3S Uab82
B1

B2
U4

1
4c2uau2

B2
2x4

3Uab82
B1

B2
U2

1
c4uau4

B2
4x8 D

3expS 2
2gN

x2B2

2N
B1

2

B2
2NB2x2ub8u2D . ~A14!
02660
s

Let us now convince ourselves with this expression that
were justified in omitting the termgN(uau21ubu212x2) in
Eq. ~A11! and in using Eq.~A13!. Indeed, the various quan
tities scale asB1.gN, B2.g2N3, and uau2.ubu2.x2

.1/gN2, because anyg andN dependence disappears if on
passes to appropriately rescaled quantitiesB1 /gN, etc. The
terms omitted are therefore of order 1/N.

The remaining integrations in Eq.~A14! are readily per-
formed, with the final result Eq.~27!. The distribution ofB1,
to order 1/N, is

P~B1!5
gN

B1
3 ~B112gN!expS 2

2gN

B1
D . ~A15!

The spectral momentB1 appeared before in a differen
physical context in Ref.@20#, but only a heuristic approxi-
mation was given in that paper. Equation~A15! solves this
random-matrix problem precisely.

For completeness we also give the distribution of t
other spectral momentB2 ~rescaled asB̃25B2g22N23) in
terms of MeijerG functions:

P~B̃2!5
1

64B̃2
5/2p1/2F14pB̃2216G3,0

0,3~B̃2u2 1
2 ,0,32 !

120G3,0
0,3~B̃2u2 1

2 , 1
2 ,1!122G3,0

0,3~B̃2u 1
2 , 1

2 ,1!

18 G3,0
0,3~B̃2u 1

2 ,1,32 !14 G3,0
0,3~B̃2u 1

2 , 3
2 ,2!

28 G4,1
1,3S B̃2U2 1

2 ,0,32 ,2

1
D 216G4,1

1,3S B̃2U0,1
2 , 3

2 ,2

1
D

13 G4,1
0,4S B̃2U 1

2 , 1
2 , 3

2 , 3
2

0
D G . ~A16!

4. Coefficients

Now we calculate the coefficientsc2 andc4 defined in Eq.
~A12!. It is convenient to resize the matrixY to dimensionN
~instead ofN22), and to setgN51 momentarily. We again
use a block decomposition,

Y5S a wT

w Z D , ~A17!

and employ the identities

detY5~a2wTZ21w!detZ, ~A18a!

~Y21!115~a2wTZ21w!21. ~A18b!

Hence

c45
^udetZu4&

^udetYu4&
5

4

~N11!~N13!
, ~A19!

where we used Selberg’s integral@27# for
5-9
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^udetYu4&5
1

6

G~N14!G~N12!

22N
. ~A20!

In order to evaluate

c25
^udetZu4~ uau21uwTZ21wu2!&

^udetYu4&
, ~A21!

it is again profitable to use unitary invariance and turnw in
direction 1:

uwTZ21wu25w4u~Z21!11u2. ~A22!

From ^w4&5 1
4 N(N11) and ^uau2&51 we then obtain the

recursion relation

c2~N!5
4

~N11!~N13!
1

N

N13
c2~N21!, ~A23!

which is solved by

c2~N!5
2

N11
. ~A24!

In order to reintroduceg we have to multiplycm by (gN)m/2,
and obtain, to order 1/N,

c252g, c454g2, ~A25!

as advertised above.

APPENDIX B: JOINT DISTRIBUTION
OF B1 AND B2 FOR bÄ2

For broken time-reversal symmetry, the distributions
B1 andB2 have to be calculated from the Laguerre ensem
@Eq. ~8!# with b52. Similarly as for preserved time-revers
symmetry, this ensemble can be obtained from the eigen
ues of a matrixW†W. The matrixW is once more complex
but no longer symmetric~it is also not Hermitian!. It has a
Gaussian distribution

P~W!}exp~22gN tr W†W!, ~B1!

with measure

d W5)
i , j

d ReWi j d Im Wi j . ~B2!

It is instructive to calculateP(B1) first, because it will be
instrumental in the calculation ofP(B1 ,B2). After averaging
over theui ’s, the characteristic function takes the form

x~p!5^exp~2 ipB1!&5K detW†W

det~W†W1 ip/N!
L . ~B3!

We express the determinant in the denominator as an inte
over a complex vectorz. Due to the invarianceW→UWV of
P(W) for arbitrary unitary matricesU andV, we can turnz
in direction 1, and write
02660
f
le
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W5S a x8 0T

x

Y

0

D . ~B4!

Then

P~B1!}E dpdzz2N21d2adxx2N23dx8x82N23

3~ uau21d2x2x82!exp@2~z212gN!~ uau21x2!#

3exp@ ip~B12z2/N!22gNx82#. ~B5!

Selberg’s integral@27# gives

d2[
^udetYu2u~Y21!11u2&

^udetYu2&
5

2gN

N21
. ~B6!

The integration overp givesd(z22NB1), and allows one to
eliminate z. The integration overx8 amounts to replacing
x825(N21)/2gN5d2

21. The final integrations are mos
easily carried out by concatenatinga to x, giving an
N-dimensional vectory. Then

P~B1!}E dyy2N11B1
N21

3exp@2N~B112g!y2#

}B1
N21~B112g!2N21, ~B7!

which to order 1/N becomes

P~B1!5
2gN

B1
2

exp~22gN/B1!. ~B8!

The first steps in the calculation of the joint distributio
function of B1 and B2 are identical to what was done i
Appendix A, and result in the characteristic functionx(p,q)
in the form of Eq.~A6!, but with g replaced by 2g. Due to
the unitary invariance of theW ensemble we can write

W5S a x8 0 0T

x b y8 0T

0 y

Y

0 0

D . ~B9!

One now integrates overp andq and obtains delta function
as in Eq.~A10!. This is followed by integration overz. The
calculation is then much simplified by recognizing that o
can rescale the remaining integration variables in such a
~namely, by introducinga25ã2B1 /B2 , x25 x̃2B1 /B2 , y82

5 ỹ82x22B2
21) that

P~B1 ,B2!5B2
23exp~2NB1

2/B2! f ~B1!. ~B10!
5-10
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It is not necessary here to givef (B1) as a lengthy multidi-
mensional integral, since its functional form is easily reco
ered from the relation

P~B1!5E dB2P~B1 ,B2!5N22B1
24f ~B1!. ~B11!

We compare this with Eq.~B8!, and arrive at Eq.~41!. The
distribution ofB2 has the closed-form expression

P~B2!5g22N23G3,0
0,3~g22N23B2u2 1

2 ,21,22!.
~B12!

APPENDIX C: JOINT DISTRIBUTION OF C0 AND C1

We seek the joint distributions of the spectral mome
C0 and C1, which determinef8 and I for b51 andn5m
via Eq. ~29!. We start with the characteristic function

x~p0 ,p1!5^exp@ i Re~p0C01p1C1!#&, ~C1!

wherep0 andp1 are complex numbers, as are the quantit
C0 andC1 themselves. SinceCk5( iui

2t i
k , we have to aver-

age over thet i ’s and theui ’s. Averaging over theui ’s first,
we obtain

x~p0 ,p1!5K)
i

S 11
up1t i1p0u2

N2 D 21/2L . ~C2!

We again regard the ratesm i5t i
21 as the eigenvalues of

matrix productYY†, whereY will be specified below. Then
the product of square roots can be written as a ratio of
terminants:

)
i

S 11
up1t i1p0u2

N2 D 21/2

5detYYT detF ~YYT!2
N21up0u2

N2

12
Rep0p1*

N2
YYT1

up1u2

N2 G21/2

. ~C3!

We will express the determinant in the denominator a
Gaussian integral over areal N-dimensional vectorz. Hence
it is convenient to chooseY real as well, so that one can us
orthogonal invariance in order to turnz in direction 1. More-
over, there is a representation ofY which allows one to in-
corporate the determinant in the numerator into the proba
ity measure: We takeY as a rectangularN3(N13) matrix
with random Gaussian variables, distributed according to

P~Y!}exp~2gN tr YYT!. ~C4!

The corresponding distribution of the eigenvaluesm i of YYT

is given in Ref.@23#, and differs from the Laguerre ensemb
@Eq. ~8!# by the additional factor) im i5detYYT. In this rep-
resentation,
02660
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x}E dzzN21K exp$2z2~11up0u2/N2!@~YYT!2#11%

3expF2 Rep0p1*

N2
@YYT#111

up1u2

N2 G L , ~C5!

where the average is now overY. Inverse Fourier transfor-
mation with respect top0 andp1 results in

P~C0 ,C1!}K E dzzN25
exp@2z2@~YYT!2#11#

@~YYT!2#112~@YYT#11!
2

3expF2
uC1u2N2

4z2
2

N2

4z2

3
uC02@YYT#11C1u2

@~YYT!2#112~@YYT#11!
2G L . ~C6!

The orthogonal invariance ofYYT allows us to param-
etrizeY as

Y5S a v 0T

w b

0 y Z

0 0

D , ~C7!

with real numbersv.0, w.0, y.0, a, and b, and an
@(N21)3(N11)#-dimensional matrixZ. It is good to see
thatZ drops out of the calculation, because it does not app
in

@YYT#115a21v2, ~C8a!

@~YYT!2#115~a21v2!21~aw1vb!21v2y2. ~C8b!

We replaceb5b82aw/v, and introducez85zyv. The inte-
gral over z8 can be written in the saddle-point form
*dz8z8Ne2z82

f (z8)} f (AN/2) for largeN. The resulting ex-
pression varies with respect to the remaining variables on
scales

N3a2.N2b82.N2v2.Ny2.w25O~g21!. ~C9!

We use the given orders of magnitude to eliminate terms
order N21, but keep the residual correlations ReC0C1* /gN
5O(N21/2). The joint distribution function ofC0 andC1 is
then
5-11
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P~C0 ,C1!}E dadb8dvv3dwwN22dyyexp@2gNy2#

3expF2gNw2S 11
a2

v2D 2
N

2y2
~v21y21b82!G

3expFNv2 ReC0C1* 2
Nv2y2uC1u2

2
2

NuC0u2

2 G .
~C10!

Now we can integrate overa, b8, w, andv, and arrive at

P~C0 ,C1!}E dy
exp@2gNy22NuC0u2/2#

~y221y2uC1u212 ReC0C1* !5/2
.

~C11!

The final result @Eq. ~30!# is obtained by substitutings
5gNy2.

APPENDIX D: DISTRIBUTION OF A1 FOR bÄ1

In the large-N limit the joint distribution function
P(A0 ,A1)5P(A0)P(A1) factorizes, as explained in Se
III E. The distribution ofA0 is given in Eq.~37!. It remains
to calculate the distribution ofA15( it iuiv i . The ui ’s and
v i ’s are independent Gaussian random numbers. Avera
over them, we obtain the characteristic function

x~p!5^exp@ i Re~pA1!#&5K)
i

S 11
upt i u2

4N2 D 21L
5K det~W†W!2

det@~W†W!21upu2/4N#
L , ~D1!

where p is a complex number. The Laguerre ensemble
again represented as the eigenvalues of the matrix pro
W†W, whereW is the complex symmetric matrix with dis
tribution ~A1!. Following the route of Appendix A we rep
resent the determinant in the denominator by a Gaussian
tegral over a complex vectorz, and choose a basis in whic
W is of the form of Eq.~A8!. The characteristic function is
then obtained as the following multidimensional integral:
m

in

ke
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x~p!5E dx dy dzd2ad2bdY3udetYu4ua@b2y2~Y21!11#
2

2x2u4expS 2
uzpu2

4N2 D exp@2z2
„~ uau21x2!21x2ua

1b* u21x2y2
…#exp@2gN~ uau21ubu2

12x212y21tr Y†Y!#. ~D2!

Let us briefly describe in which order the integrations a
performed most conveniently. Fourier transformation w
respect top converts the characteristic function back into t
distribution functionP(A1). This step gives rise to a facto
z22 exp(2uA1u2N2z22). We can also integrate overy, which
results in a factor exp@22gN/(xz)2#. We introduce new vari-
ables by the substitutionsb5b̃2a* , x5v/z, and a5a8/z.
After these transformations one succeeds in integrating o
b8, z, anda8. The remaining integral overv5uvu is of the
form

P~A1!}uA1u25E dvv25e22/v

3Fp@8uA1u2~214v1v2!13v2~16116v13v2!#

2
2uA1uv

~ uA1u21v2!4
@ uA1u4v4~2881304v225v2!

1uA1u6v2~1921176v217v2!

18uA1u8~614v2v2!13v8~16116v13v2!

1uA1u2v6~1921208v141v2!#

2@16uA1u2~214v1v2!16v2~16116v13v2!#

3arctanS v
uA1u D G . ~D3!

The more compact form@Eq. ~38!# is the result of the re-
placementv52/s, followed by a number of partial integra
tions.
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