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Localization-induced coherent backscattering effect in wave dynamics
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We investigate the statistics of single-mode delay times of waves reflected from a disordered waveguide in
the presence of wave localization. The distribution of delay times is qualitatively different from the distribution
in the diffusive regime, and sensitive to coherent backscattering: The probability of finding small delay times
is enhanced by a factor close {@ for reflection angles near the angle of incidence. This dynamic effect of
coherent backscattering disappears in the diffusive regime.
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I. INTRODUCTION #m by a factor which is close tq2, the precise factor being
2% (4096/137%) =1.35.

The two most prominent interference effects arising from  We also consider what happens if time-reversal symmetry
multiple scattering are coherent backscattering and wave Ids broken, by some magneto-optical effect. The coherent
calization[1-6]. Both effects are related to thstaticinten-  backscattering effect disappears. However, evenntdim,
sity of a wave reflected or transmitted by a medium withthe delay-time distribution for preserved time-reversal sym-
randomly located scatterers. Coherent backscattering is tHgetry is different than for broken time-reversal symmetry.
enhancement of the reflected intensity in a narrow cond his difference is again only present for ¢, and vanishes
around the angle of incidence, and is a result of the systenin the diffusive regime.
atic constructive interference in the presence of time-reversal The plan of this paper is as follows: In Sec. Il we specify
symmetry[4,5]. Localization arises from systematic destruc-the notion[11] of the single-mode delay time’, relate it to
tive interference, and suppresses the transmitted intdi@gity the Wigner-Smith delay times, and review the res{itts]

This paper presents a detailed theory of a recently discoJor the _d|ffu5|ve_ regime, extending th(_am to include balllst|q
ered[ 7] interplay between coherent backscattering and |0ca|90rrect|qns. This secthn also g:ontams the .random-matrllx
ization in adynamicscattering property, the single-mode de- formulation for the localized regime, that provides the basis

iy i of  viave efectd by disorcerd vaveide. T 1 EACUSLone, o neoces & e el f e
single-mode delay time is the derivativ€ =d¢/dw of the g

. X tensityl. Section Il presents the calculation of the joint dis-
phases of the wave amplitude with respect to the frequencytribution of ¢’ andl. We compare our analytical theory with
w. It is linearly related to the Wigner-Smith delay times of

i . numerical simulations, and give a qualitative argument for
scattering theory8—10], and is the key observable of recent o 4ynamic coherent backscattering effect. The role of ab-

experiments on multiple scattering of microwavéd] and  gorption is discussed, as well as the effect of broken time-

light waves[12]. Van Tiggelen.et al.[13] developed a sta- reversal symmetry. Details of the calculation are delegated to
tistical theory for the distribution o’ in a waveguide ge- the Appendixes.

ometry(where angles of incidence are discretized as modes

Although the theory was worked out mainly for the case of

transmission, the implications for reflection are that the dis- Il. DELAY TIMES

tribution P(¢") does not depend on whether the detected A. Single-mode delay times

moden is the same as the incident moneor not. Hence it ) ) ) )

appears that no coherent backscattering effect exists for We consider a disordered mediumean free path) in a

P(4"). waveguide geometrilengthL), as depicted in Fig. 1. There
What we will demonstrate here is that this is true only if 3¢ N>% propagating modes at frequenay given by N

wave localization may be disregarded. Previous studies” ™A/A” for a waveguide with an opening of are@ The

[11,13 dealt with the diffusive regime of waveguide lengths Wave velocity isc, and we consider a scalar waidésregard-

L below the localization lengté. (The localization length in "9 polarization for simplicity. In the numerical simulations

a waveguide geometry i§=NI, with N the number of We will work with a two-dimensional waveguide of wid,

propagating modes aridhe mean free pathHere we con- WhereN=2W/x. _
sider the localized regime> ¢ (assuming that also the ab- We study the dependence of the reflected wave amplitude
sorption lengthé > £). The distribution of reflected intensity ro—JTei® )

is insensitive to the presence or absence of localization, be- nm
ing given in both regimes by Rayleigh’s law. In contrast, we
find that the delay-time distribution changes markedly as onen the frequencw. The indices andm specify the detected
enters the localized regime, decaying more slowly for largeand incident mode, respectivelj\We assume single-mode
|#'|. Moreover, a coherent backscattering effect appearsxcitation and detectionHere | =|r,,|? is the intensity of
For L> ¢ the peak ofP(¢’) is higher forn=m than forn the reflected wave in the detected mode for unit incident
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) Tdr -

—Ir d_w:U dlaQTl,---,TN)Uv (5@
o odrT .

—|r*—dw =V' diag 7, ...,m)V, (5b)

with U andV unitary matrices of eigenvectors. In the pres-
ence of time-reversal symmetny is a symmetric matrix;
henceV=U in this case.

For small 6w we can expand

FIG. 1. Sketch of a waveguide containing a randomly scattering
medium and illuminated by a monochromatic plane wave. We study  r(w=*%8w)=V'U*iswV' diag 7, ...,)U. (6)
the frequency dependence of the phasef the reflected wave

amplitude in a single speckle, corresponding to a single waveguidgnserting this into Eq(3) and comparing with Eq4) yields
mode. The derivativep’ =d¢/dw is the single-mode delay time.  the relations

intensity, and characterizes the static properties of the re- A, 5 .
flected wave. Dynamic information is contained in the phase ¢'=Rer~, I= Aol2, A=2 Tupp;. (7
derivative 0 '

de We have abbreviated;=U;,, andv;=V;,. In the special
¢ =, 2 casen=m, the coefficientsu; and v; are identical in the
do presence of time-reversal symmetry.
The distribution of the Wigner-Smith delay times in the
which has the dimension of a time and is called the singleigcalized regime was determined recerftl]. In terms of

mode delay timg¢11,13. The intensityl and the delay time  the ratesu;= 1/, it has the form of the Laguerre ensemble
¢' can be recovered from the product of reflection matriXof random-matrix theory,

elements
p=Fom(@+180)r (0—L6w), 3) F’({m})mil;[j |Mi_Mj|B1_k[ O (e AN A (g)

evaluated at two nearby frequencies- 3 Sw. To leading

where the step functio® (x)=1 for x>0 and 0 forx<O0.
order in the frequency differencd&w one has P (x)

The parametey is defined by

Im _
p=I(1+idwd’)=1= lim Rep, ¢'= lim —- . y=allc, ©)
Sw—0 5w~>05w|
(4) with the coefficienta=7%/4 or 8/3 for two- or three-

dimensional scattering, respectively. Equati@) extends
We seek the joint distribution functioB(l,¢') in an en-  theN=1 result of Refs[15-17 to anyN.
semble of different realizations of disorder. We distinguish ~ The matricedJ andV in Eq. (6) are uniformly distributed
between the diffusive regime whekeis small compared to in the unitary group. They are independent fo=2, while
the localization lengthé=NI, and the localized regime U=V for 8=1. In the largeN limit the matrix elements
where L= ¢. Localization also requires that the absorptionbecome independent Gaussian random numbers with vanish-
length £,=&. We will contrast the case of excitation and ing mean and variance N/ Hence
detection in two distinct modes# m with the equal-mode
casen=m. Although we mainly focus on the optically more (u)=(v)=0, (Jul®»=(vi|>)=N"1, (10
relevant case of preserved time-reversal symmetry, we will
also discuss the case of broken time-reversal symmetry fokith u;=v; forn=mandg=1. Corrections to this Gaussian
comparison. These two cases are indicated by the indexé@pproximation are of order M/
B=1 and 2, respectively.
C. Diffusion theory

B. Relation to Wigner-Smith delay times The joint probability distributiorP(I, ') in the diffusive

In the localized regime §<L,&,) we can relate the regimel<L<¢ was derived in Refd.11,13,
single-mode delay time’ to the Wigner-Smitj8—10] de- —

lay times 7;, with i=1,... N. The 7;’s are defined for a Pair(1,¢")=0(1)(I/m1%) % (Q¢'?) 12
unitary reflection matrix (composed of the elements); | r T2

hence they require the absence of transmission and of ab- e p(_lu) (11)
sorption. One then has I Q¢? )
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with constantd, ¢’, andQ. It has the same form for trans- 010 - ' ' ' '
mission and reflection, the only difference being the depen- ' L/E=0.09
dence of the constants on the system parameters. Here we 0.08
focus on the case of reflection, because we are concerned - 0.06
with coherent backscattering. §
From the joint distribution functiodEq. (11)], for the 0.04
intensity one obtains the Rayleigh distribution 0.02
0.00
1 — 20 -10 0 10 20

FIG. 2. Distribution of the single-mode delay timg' in the
Hencel is the mean detected intensity per mode. It is giveryitusive regime. The result of numerical simulati¢ttata points
by [18] with N=50 propagating modes is compared to the prediction
(14)] of diffusion theory(solid curve. There is no difference be-
tween the casa=m of equal-mode excitation and detecti@pen
circles and the cas@&#m of excitation and detection in distinct
modes(full circles).
assuming unit incident intensity. The factor of 2 enhance-
ment in the cas@=m is the static coherent backscattering D. Ballistic corrections
effect mentioned in Sec. |, which exists only in the presence
of time-reversal symmetry4=1). Equationg12) and(13)
remain valid in the localized regime, since they are deterabove are valid up to corrections of ordék. Here we give

mined by scattering on the scale of the mean free patl{m:e acc\l/Jvrate fO(;I”?#la.S tthat account f?; these bal:'St'C Clor-
HencelL>| is sufficient for static coherent backscatterlng,rec ions.(We need these to compare with numerical simula-

and it does not matter whethkris small or large compared tions) We determine the ballistic corrections fQrand ¢’

— 1
= N(1+ 3p100m) s (13

The expressions for the constarits ¢’, and Q given

to &. by relating the dynamic problem to a static problem with
By integrating over in Eq. (11) one arrives at the distri- absorption.(This relationship only works for the mean. It
bution of single-mode delay timé41,13, cannot be used to obtain the distributipt®].) The mean

total reflectivity

Pdiﬁ(cﬁ'):%[Qﬂq&’/E’—1)2]‘3’2. (14) 5=1+x—\/2x+x2cotr[s\/2x+x2+arcosm1+x)](18

Hence¢' is the mean delay time, whilgQ sets the relative for absorptiona’x per mean free path was evaluated in Ref.
width of the distribution. These constants are determined by20]. [Here a’ is the same constant as in the definitionspf

the correlatof11,13 see Eq.(17).] We identify Cy,=a(x)/a(0) by analytical
+ Solr* continuation to an imaginary absorption rate —idwvy.
:<r”m(“’ ®)m(@)) Expanding inx to second order, we find
12 -
<rnm(w)rnm(w)>
— ) —  s(3+29) 8s%+28s°+30s+ 15
=1+i¢' bw—3¢"2(Q+1)(dw)>. (15) REGETE = 5251 3)7 (19

Diffusion theory gives
E. Numerical simulation

¢'=2ys/3, Q=2s/5. (16 . o .
The validity of diffusion theory was tested in Refd1—
Here vy is given by Eq.(9). We have defined 13] by comparison with experiments in transmission. In Fig.
2 we show an alternative test in reflection, by comparison
s=a'Lll, (17 with a numerical simulation of scattering of a scalar wave by

a two-dimensional random mediumiWe assume time-
where the numerical coefficient’ =2/, 3/4 for two- and  reversal symmetry.The reflection matrices(w= 3 dw) are
three-dimensional scatterin@-he corresponding result f@  computed by applying the method of recursive Green func-

given in Ref.[13] is incorrect) tions[21] to the Helmholtz equation on a square lattitz-
Diffusion theory predicts that the distribution of delay tice constant). The widthW=100a and the frequencw
times[Eq. (14)], as well as the values of the constagts  =1.4c/a are chosen such that there &te-50 propagating

andQ, do not depend on the choice=m orn#m (and also modes. The mean free pdthk 14.0a is found from the for-
not on whether time-reversal symmetry is preserved or. not mula[22] trrr '=Ns(1+s) ! for the reflection probability.
Hence there is no dynamic effect of coherent backscatterinfhe corresponding localization lengti=NL/s=1100a.

in the diffusive regime. The parametety=46.3a/c is found from Eq.(19) by equat-
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ing (¢')=¢’. (This value ofy is somewhat larger than the ' ' ' ' '

value y=72l/4c=34.5a/c expected for two-dimensional L/g=45 n=m

scattering, as a consequence of the anisotropic dispersion 0.002

relation on a square lattigeWe will use the same set of ;‘

parameters later in this paper in the interpretation of the re- §

sults in the localized regime. Our numerical results confirm 0.001

that in the diffusive regime the distribution of delay timg$

does not distinguish between excitation and detection in dis-

tinct modes (= m, full circles) and identical modesn=m, 0.000 400 200 O 200 400

open circles O/l

IIl. DYNAMIC COHERENT BACKSCATTERING EFFECT FIG. 3. Distribution of the single-mode delay timg& in the
localized regime. The results of numerical simulations with

A. Distinct-mode excitation and detection =50 propagating mode@®pen circles fom=m, full circles forn

We now calculate the joint probability distribution func- #m) are .compared to the analytical p.redictiqns. The curve for dif-
tion P(I,¢') of intensityl and single-mode delay timé’ in ferent incident and detected modes m is obtained from Eq927)

the localized regime, for the typical case:m of excitation ~ 2nd(28). The curve fom=miis calculated from Eq429) and(30).
and detection in two distinct modes. We assume a preserveTJle same value foy is used as in the diffusive reginig. 2.
time-reversal symmetryg=1), leaving the case of broken , 311 12 —NI
time-reversal symmetry for the end of this section. P(I,¢")=0()(N*/m) %

It is convenient to work momentarily with the weighted (¢'—By)?
delay timeW= ¢'l and to recoveP(l,¢') from P(I,W) at X < (BZ—BE)‘”Zexp( NI ! )>

the end. The characteristic function

x(p,q)=(e""PI-iaW (20) (26)

B,—BZ

The average is over the spectral momeBfsand B,, which
depend on they;’s and 7;’s via Eq. (23).

The calculation of the joint distributioR(B;,B,) is pre-
sented in Appendix A. The result is

is the Fourier transform oP(l,W). The averag€---) is
over the vectorsi andv and over the set of eigenvalugs}.
The average over one of the vectors, says easily carried
out, because it is a Gaussian integration. The result is a d
terminant:

NB?
X(p. @)= (de{ 1+iH/N) %), (213 P(Bl'BZ):®(Bl)®(BZ)eXF’(_B_z)
H=pu*uT+iq(u*u™+u*u’). (21b) BIyN?

2
+—(Bot yNzal)exp( - —
B B

The Hermitian matrixH is a sum of dyadic products of the 2

vectorsu and u, with u;=u;7;, and hence has only two NS ) 5 A [ 29N
non-vanishing eigenvalues, and A_. Some straightfor- - (252—45132N+51N2)E|(—B—) ,
ward linear algebra gives 4B3 !
_1 2 2 (27)
N-=3(qB;+p=y2pgB;+0°B,+p?), (22
where Eifk) is the exponential-integral function. The distri-
where we have defined the spectral moments butionP(I,¢’) follows from Eq.(26) by integrating oveB,
and B, with weight given by Eq(27).
Bkzz |Ui|2Tik- (23) Irrespective of the distribution oB; and B,, from Eq.

i (26) we recover the Rayleigh layEq. (12)] for the intensity
I. The distributionP(¢') = [5d IP(l,¢") of the single-mode

The resulting determinant is delay time takes the form

de(1+H/N) 1=(1+N, /N) " H1+N_/N)"Y (29)

- = P(By,By)(B,~B))
P(¢’ =f dB f dB . (28
hence (¢ ) 0 1 0 22(BZ+ ¢/2_251¢/)3/2 ( )
. . -1
_ Ip Iq q° 2 In Fig. 3 this distribution is compared with the result of a
X(p,q)—< 1+ W+ WBl+ N(BZ_Bl)] > numerical simulation of a random medium as in Sec. Il E,

(25)  but now in the localized regime. The same value fowas
used as in Fig. 2, making this comparison a parameter-free
An inverse Fourier transform, followed by a change of vari-test of the theory(Note thaty alone determines the complete
ables froml,\Wto |,¢’, gives distribution function in the localized regime, in contrast to
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the diffusive case where two parameters are requirEde [ ' T ]
numerical data agree very well with the analytical prediction. 08 n=m

B. Equal-mode excitation and detection

We now turn to the case=m of equal-mode excitation
and detection, still assuming that time-reversal symmetry is

preserved. Since;=v;, we now have n#m
0 1 1 1
, Cy -1 05 0 05 1
¢'=Rez 1=|Col?, ck=§i‘, HuZ. (29 o YN

FIG. 4. Distribution of the single-mode delay timg in the
localized regime for preserved time-reversal symmetry, in the limit
N—oo. In this limit P(¢') becomes symmetric for positive and
negative values of’. Compared are the result farr m [Egs.(33)

" and (A16)] andn=m [Egs.(29), (34), and(35)]. The distribution
P(Coycl)“exﬂ_N|Co|2/2)J dsge s for n=m falls on top of the distribution fon#m when ¢’ is

0 rescaled by a factor 1.3&lashed curve, almost indistinguishable
from the solid curve fon#m).

The joint distribution functionP(C,,C4) of these complex
numbers can be calculated in the same wap@3,,B>). In
Appendix C we obtain

|C,|%s? 2s o
X . (30

+ o *
1 —72N2 N ReCyC3

P(¢') for positive and negative values @ is an effect of
S . o orderN~ %2 The asymmetry is hence captured faithfully by
The corresponding distribution functid?(¢’) is also plot-  oyr calculation. We now consider how the asymmetry even-
ted in Fig. 3, and compared with the results of the numerica 5|y disappears in the limil— .

simulation. Good agreement is obtained, without any free oy gistinct modesi# m, the spectral moments scale as

parameter. B,~yN andB,~ y?N3. With ¢’ ~yN%?2 one finds thaB,
can be omitted to ordeX ™2 in Eq. (28). One obtains the
C. Comparison of both situations symmetric distribution

Comparing the two curves in Fig. 3, we find a striking

difference between distinct-mode and equal-mode excitation P(b)= J“’de P(B)B, 33

and detection: The distribution fan=m displays an en- 2(B,+ ¢p'?)%?

hanced probability of small delay times. In the vicinity of the

peak, both distributions become very similar when the delay

times forn+m are divided by a scale factor of aboy2. In  plotted in Fig. 4.

the limit N—o (see Sec. IlID, the maximal value For identical modesi=m, observe that the quantiti€,

P((bpl)eal): J2/wN3»? for n=m is larger than the maximum andC; become mutually independent in the lafgeimit:

of P(¢') for n#m by a factor The cross-term ¥N) 1 ReCyC} in Eq. (30) is of relative

orderN‘ll/IZ2 becauseC,~N~*2 andC,;~ yN. Hence, to or-

Prem(Pread 4096 der N™Y4 the distribution factorizes, P(Cq,C4)
Pns&m(¢zeak) =\2x 1371 1.35. 31 =P(Cy)P(C,). The distribution ofC, is a Gaussian,

Correspondingly, the probability to find very large delay N
times is reduced forn=m. This is reflected by the P(Co)= s—exp—N|Cy|%/2), (34)
asymptotic behavior 2

yN32((27) "2 for n=m

— = . (320  as a consequence of the central-limit theorem, and
@' /4 for n#m.

P(¢')~

The enhanced probability of small delay times form o C,|2s2 —5/2
is the dynamic coherent backscattering effect mentioned in P(Cl)ocf dsse S| 1+ N (35
Sec. |. The effect requires localization, and is not observed in 0 YN

the diffusive regime.

D. Limit Nes o The resulting distribution o’ =Re(C,/C,) is also plotted

in Fig. 4.
The results presented so far assufde 1, but retain The dynamic coherent backscattering effect persists in the
finite-N corrections of ordeN Y2 (Only terms of order M limit N—oo, it is therefore not due to finitBl corrections.

and higher are neglectedt turns out that the asymmetry of The peak heights differ by the factor given in Eg1).
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E. Interpretation in terms of large fluctuations 1 T T T

k=1 ——
In order to explain the coherent backscattering enhance- 1 k=2 -mmm-m-
ment of the peak oP(¢') in more qualitative terms, we
compare Eq(29) for n=m with the corresponding relation
[Eq. (7)] for n#m.

The factorization of the joint distribution function
P(C,,C,) discussed in Sec. llID can be seen as a conse-
guence of the high density of anomalously large Wigner-
Smith delay times; in the Laguerre ensemb]&qg. (8)]. The
distribution of the largest time,,,,=max 7 follows from the
distribution of the smallest eigenvalue in the Laguerre en-
semble, calculated by Edelm@R3]. It is given by FIG. 5. Distributions ofB;=B;/yN and B,=B,/y?N>. The
analytic prediction from Eq(27) [for explicit formulas see Egs.

2

_ YN N2 (A15) and(A16)] is compared to the result of a numerical simula-
P(Tmax = 2 XP( = YN/ T (36) tion of a Laguerre ensemble witki=50.
max
F. Localized vs diffusive regime
As a consequence, the spectral mon@nts dominated by a Comparison of Eq911) and(26) shows that the two joint

small number of contributions? 7, (often enough by a single distributions ofl and ¢’ would be identical if statistical fluc-

one, say with index=1), while C, can be safely approxi- tuations in the spectral momerés andB, could be ignored.

mated by the sum over all remaining indideésay,i#1).  The correspondences are

The same argument applies also to the spectral mondgnts _ _

which determine the delay-time statistics fo#=m; hence Bi—~¢', B,~Bi-Qe'2 (39

the distribution functiorP(Ag,A,) factorizes as well. o ] ]
The quantitiesh, andC, have a Gaussian distribution for However, the distributio(B,,B,) is very broad(see Fig.

large N, because of the central-limit theorem, wik(Cy) 5), so that fluctuations caot be ignored. The most probable

given by Eq.(34) and values are
BELypicaI2 ’yN, Btzypicalz ,yst’ (40)

P(Ay) = Eexp(— N|Aol?). (37)  but the mean valuegB,),(B,) diverge—demonstrating the
77 presence of large fluctuations. In the diffusive regibe ¢
the spectral momentB; and B, can be replaced by their
. I ensemble averages, and the diffusion théady13 is recov-
It then becomes clear that the main contribution to the eNared.(The same applies if the absorption lengthe £.)
hancementEq. (31)] of the peak height, namely, the factor 1o 14106 fluctuations i, and B, directly affect the
of y2, has the same origin as the factor of 2 enhancement Qf4tistical properties of the delay tim#'. We compare the
the mean intensity. More precisely, the relatioR(Ao=X)  distribution[Eq. (28)] in the localized regiméFig. 3 with
=2P(Cy=y2x) leads to a rescaling &(I) forn=mby a the resul{Eq. (14)] of diffusion theory(Fig. 2). In the local-
factor of 1/2 and to a rescaling &%(¢') by a factor ofy2.  ized regime the value, = BYP@ at the center of the peak
The remaining factor of 4096/137%%=0.95 comes from the of P(¢') is much smaller than the width of the peaks’
difference in the distributionB(A;) andP(C,). It turns out :(Btzypica')m: ¢,F’)eak(§/|)1/2_ This also holds in the diffusive

that the distribution regime, wherep .= ¢’ andA ¢’ = ¢, (L/1)"% However,
the mean(¢')=(B;) diverges forP, but is finite (equal to
¢') for Py . For largeB, one has, asymptoticalhyR(B,)

) 1 52
P(A1)=J' ds ~iNy¥2/7B, 2. As a consequence, in the taiP¢’)
o ATYN (4+]A/N|?s?)3 falls off only quadraticallyisee Eq(32)], while in the diffu-
X[~ S(64+ 325+ 1252+ s3) — 352 Ei(—s)] sive regimeP(¢')~3Q¢'?|¢’'|~° falls off with an in-
verse third power.
(38)
G. Role of absorption
(derived in Appendix D is very similar toP(C,) given in Although absorption causes the same exponential decay
Eq. (35); hence the remaining factor is close to unity. of the transmitted intensity as localization, this decay is of a

The larger;’s are related to the penetration of the wave quite different, namely, an incoherent, nature. The strong
deep into the localized regions and are eliminated in the diffluctuations in the localized regime disappear as soon as the
fusive regimeL=<¢. In Sec. IlIF we compare the localized absorption lengthé, drops below the localization lengtf
and diffusive regimes in more detalil. because long paths which penetrate into the localized regions
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0-()“) T T T T T 0.0(n T ] T 1 T T T
g /£=0.11
- 0.040 f&ﬁ‘ T >
e Y S
< 4 L) &
0.020 » .
“"é} "‘m
0.000 =< ' , ' ' 0.000 -6I00 4I00 -2;)0 (I) 2(I)0 4(I)0 6(I)0
30 20 -10 0 10 2 30 ,
/Y
0.008 — T T T T . . , T
FIG. 7. Comparison of the single-mode delay-time distributions
€,/5=0.47 0°oo for preserved and broken time-reversal symmetry. The number of
0.006 - °.o°o‘3 ] propagating modes isl=50. The curves are calculated from Eq.
= 92' eee (28), with P(B4,B,) given by Eq.(27) (8=1) or Eq. (41 (B8
o 0004 ® %, . =2).
& iy ®e
o® %
0.002 - at® Sag &, exceedsé, as can be seen from the data fy=2.1£.
980989 Moreover, these data can already be fitted to the predictions
0.000 1'00 5'0 (') 5'0 1(')0 of random-matrix theory, withy~53.2a/c. (The valuey
) ) =46.3alc of Sec. Il E is reached when absorption is further
0.003 — reduced,
H. Broken time-reversal symmetry
- 0002 The caseB=2 of broken time-reversal symmetry is less
fe: important for optical applications, but has been realized in
& 0.001 microwave experimeni4-26¢. There is now no difference
betweenn=m and n#m. The matricesU andV have the
same statistical distribution as for the case of preserved time-
0.000 L L L L L reversal symmetry. Hence, by following the steps of Sec.

-300 -200 -100 O 100 200 300

Il A, we arrive again at Eq(26), with spectral momentB,
o/y as defined in Eq(23). Their joint distribution has now to be
calculated from Eq(8) with 8=2. This calculation is carried

FIG. 6. Single-mode delay-time distributid?(¢') in the pres-  out in Appendix B. The result is
ence of absorption. The data points are the result of a numerical

simulation of a waveguide with length=4.5¢. Open circles are for 27Nng

equal-mode excitation and detectios= m, and full circles for the P(B1,By)= ——5— exp(— NB2/B,—2yN/B;). (41)
case of distinct modes# m. In the upper panelwith £,<¢), the B>

data are compared to the predictidqg. (14)] of diffusion theory.
In the lower panel we compare with the predictidisgs. (27)—
(30)] of random-matrix theory.

The distribution of single-mode delay tim&¢’) is given
by Eq.(28), with the functionP(B,,B,). We plotP(¢') in
Fig. 7, and compare it to the case of preserved time-reversal
are suppressed by absorption. In this situation one shoulsymmetry. The distribution is rescaled by about a factor of 2
expect that the results of diffusion theory are again validtoward larger delay times when time-reversal symmetry is
even forL=¢. This expectation is confirmed by our numeri- broken. This can be understood from the fact that the rel-
cal simulations(We do not know how to incorporate absorp- evant length scale, the localization length, is twice as large
tion effects into our analytical theopy. for broken time-reversal symmetryé€2NL/s, while ¢

In Fig. 6 we plot the delay-time distribution for two val- =NL/s for preserved time-reversal symmetry
ues of the absorption length < ¢ and one valug€,> &, both
for equal-mode and distinct-mode excitation and detection.
The length of the waveguide iE=4.1¢£. The result for
strong absorption witkf,=0.11¢ is very similar to Fig. 2. We have presented a detailed theory, supported by nu-
Irrespective of the choice of the detection mode, the data camerical simulations, of a recently discovergf] coherent
be fitted to predictior(14) of diffusion theory. The plot for backscattering effect in the single-mode delay times of a
£,=0.47¢ shows that the dynamic coherent backscatteringvave reflected by a disordered waveguide. This dynamic ef-
effect slowly sets in when the absorption length becomesgect is special because it requires localization for its exis-
comparable to the localization length. The data also deviatéence, in contrast to the static coherent backscattering effect
from the prediction of diffusion theory. The full factpEq. in the reflected intensity. The dynamic effect can be under-
(31)] between the peak heights quickly develops as soon astood from the combination of the static effect and the large

IV. CONCLUSION
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fluctuations in the localized regime. P q -1
In the diffusive regime there is no dynamic coherent p.a)={I1 1+i_N+iT
backscattering effect: The distribution of delay times is un- I=1 M MiN

ence or absence of time-reversal symmetry. The effect also
disappears when the absorption length is smaller than the
localization length. In both situations the large fluctuations
characteristic of the localized regime are suppressed.

[ fi“gtmg.f. egpgﬁrlrg%nts' OTh the 1%el_al}¥—tlme d'sfmbtl;t'on We have expressed the product over eigenvalues as a ratio of
12 verified the diffusion theory13]. The theory for the determinants. We write the determinant in the denominator

localized regime presented here awaits experimental Ve”f'és an integral over a complex vector

affected by the choice of the detection mode and the pres-
_<de{(WJ‘W)z-l—ip(WTW)/N+iq/N]

det W'w)?2 >

(A5)

cation.

We thank P. W. Brouwer for valuable advice. This work xexp{— 2 [(W'W)2+ip(W'W)/N+ig/N]z}.
was supported by the “Nederlandse organisatie voor Weten-
schappelijk Onderzoek(NWO) and by the “Stichting voor (A6)

Fundamenteel Onderzoek der Materig=OM). This integral converges becaugéW is positive definite.

APPENDIX A: JOINT DISTRIBUTION L .
OF B, AND B, FOR =1 2. Parametrization of the matrix W
o - o ] Now we choose a parametrization\&fwhich facilitates a

We calculate the joint probability distribution function gtepwise integration over its degrees of freedom. The distri-
P(By,B;) of the spectral moments, andB,, defined in Eq.  pytion of W is invariant under transformatiot— UTWU,
(23), which determineP(l,¢") from Eq. (26). We assume \ith any unitary matrixU. Hence we can choose a basis in
preserved ftime-reversal symmetryB<1). Since By  which z points in direction 1, and writ&V in block form:
=3|ui|?u; ¥, we have to average over the wave function
amplitudesu;, which are Gaussian complex numbers with a x'
zero mean and varianceN,/ and the ratesu; which are x X/

distributed according to the Laguerre enseniblg. (8)] with
B=1. This Laguerre ensemble is represented as the eigeRtere 3 is a complex number. For anyN( 1)-dimensional

values of anNX N Hermitian matrixW'W, whereW is a  yectorx we can use another unitary transformation onXhe
complex symmetric matrix with the Gaussian distribution: p|gck after whichx points in direction 2. TheW is of the

W= (A7)

form
P(W)ocexd — y(N+1)tr Ww]. (A1)
o _ _ a x 0f
The calculation is performed neglecting corrections of order b T
1/N, so that we are allowed to replaber 1 by N. The mea- W=| X Yo, (A8)
sure is 0Oy Y

with the real numbek=|x|. In this parametrization
dw=[] dRew;dimw;]] dRew,dimw; .
i<j i

(W'W),;,=al?+x2,

(A2)
W'W)?],1= (|a]?+x?)2+ x?y?+ x?|a+b*|?,
1. Characteristic function [ )l (| l ) y | l
In the first step we expres¥(B;,B,) by its characteristic detW=[a(b—y"Y ly)—x?]detY,
function,
trWiw=|a|?+ |b|?+2x2+2y2+1trY,
1 o o ) )
e — pB,+igB

P(BlvBZ) (Zw)szdpfwdqé 1 ZX(D,Q), dW=d2a dzbdX dy dy,

(A3)

with y=|y|. A suitable transformation ol allows one to
replace the terny™Y 1y by y2(Y™1),;.
>, (A4) For this parametrization dV, the integrand in Eq(A6)
depends on the vectoxs y, andz only by their magnitudes
X, ¥, andz=|z|. Hence we can replacex—x?N"3dx, dy
and average over thg’s: —y2N=5dy, anddz—z2N"1dz

N
_ TR
x(p,q)—<|ﬂlexr{ ||u,|<m+ >

M
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3. Integration
The integrand in Eq(A6) involvesz, p, andq in the form

ex— Z2([(W'W)?] 1 +ip(W'W) 11 /N+ig/N)].
(A9)

It is convenient to pass back #(B;,B,) by Eq. (A3), be-
cause integration ovgy andq gives delta functions:

8[B1—7%(]a]?+x?)IN]8(B,— z°/N)

:i _1al2_y2 2
5 8(B1/B,—|al*—x%)8(B,—z°/N). (A10)
2

Subsequent integration overresults in
P(Bl,Bz)ocf d?ad?bdxdy¥N~3y2N-5BY %5

X (B1/B,—|al*~x?)[co

X |ab—x?|*+4c,|al?y?|lab— x2|?+ c4|al*y®]

Bz
Xex;{ —NB, B—;+x2y2+x2|a* +b|?

2

—2yNy?|. (A11)

Here we omitted a termyN(|a|?+ |b|?+2x2) in the expo-

nent, because it is of orderN/ as we shall see later. Fur-

thermore, we denoted

:<|detY|4|(Y_l)11|m>
(|detY]*)

(A12)

m

These coefficients will be calculated later, with the results

co=1, c,=27, andc,=4v?. Integration overy yields for
the terms proportional toc, the factors B,X?

+29) M N*2"\which can be combined with the factor

(B,x?)N™2, giving, to order IN [we anticipate y/B,x?

=O(IN)],
2yN
H(Bzxz)mex;{ - Byx2>'

2

(BzXZ)N_Z

(BZX2+2y)N72+m

(A13)

We introduce a new integration variable by=b-+a*.
So farP(B,B>) is reduced to the form

P(Bl,Bz)ocf d2ad?b’dxxd(B/B,—|a|?—x?)

" ’ " B, 4+4C2|a|2
a RN
B> B3x*

Bi? cylal*
Xlab'— =— +

B, ngs

2yN B3
Xexp — —N=—"—NB?b'|?|. (A14)

p( 2, B, B2 b’

PHYSICAL REVIEW E 63 026605

Let us now convince ourselves with this expression that we
were justified in omitting the termyN(|al?+ |b|2+2x?) in
Eqg. (A11) and in using Eq(A13). Indeed, the various quan-
tities scale asB;=vyN, B,=v°N3% and |a|?=|b|?=x?
=1/yN?, because any andN dependence disappears if one
passes to appropriately rescaled quantiBgeéyN, etc. The
terms omitted are therefore of ordelNL/

The remaining integrations in EgA14) are readily per-
formed, with the final result Eq27). The distribution ofB,,
to order 1N, is

vN 2yN
P(Bl):§(Bl+27N)ex _B_j_ . (A15)

1

The spectral momenB,; appeared before in a different
physical context in Ref[20], but only a heuristic approxi-
mation was given in that paper. Equatiohl5) solves this
random-matrix problem precisely.

For completeness we also give the distribution of the

other spectral momerB, (rescaled a88,=B,y °N"%) in
terms of MeijerG functions:

B)= — B, — 03B |—1p8
P(BZ)_ 64%2/2’771/2 144782 1663,0(BZ| 210!2)

206348yl 1,3,1)+ 22635,

~ |—3,03.2 ~ 103,32
-8GLHY B, 7T -16GH B, 7
1 1
1133
+3G% B, 2’2(’)2’2” (A16)

4, Coefficients

Now we calculate the coefficients andc, defined in Eq.
(Al12). It is convenient to resize the matrikto dimensionN
(instead ofN—2), and to setyN=1 momentarily. We again
use a block decomposition,

a w'
Y=(W 2 ) (A17)
and employ the identities
detY=(a—w'Z 'w)detz, (A183)
(Y H=(a—w'z"lw) L. (A18b)
Hence
~(|detz]?) 4 (AL9)

T (|dety]?  (N+1)(N+3)’

where we used Selberg’s integfal7] for
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dotyldy - LTNFAT(N+2) , a x 0
(ldetv| =5 ———— (A0 }
W= vl (B4)
In order to evaluate 0
((dewzl*(al?+ Wz tw)
Cr,= , Th
? (|detv|%) o
it is again profitable to use unitary invariance and tarin P(Bl)ocf dpdzZN~td%adxxN"3dx'x'2N"3
direction 1:
2 212 _ (52 2 2
W'z~ 2= w4 (2~ 1) 2. (A22) X (|a]*+dpx*x"%)exd — (z°+2yN)(|a]*+x*)]
xexgip(B;—z*/N)—2yNx'?]. B5
From (w*=3N(N+1) and{|a|®)=1 we then obtain the Hip(B, )= 2N (85
recursion relation Selberg’s integral27] gives
4 N (|detY[?|(Y " Huyl?) _ 29N
Co(N)= + c(N—1), (A23 = w/_27
which is solved by The integration ovep gives 8(z>—NB;), and allows one to
2 eliminate z. The integration ovex’ amounts to replacing
c2(N)= {1 (A24)  x'?=(N-1)/2yN=d,*. The final integrations are most

easily carried out by concatenating to x, giving an
In order to reintroduce we have to multiplyc,, by (yN)™2, ~ N-dimensional vectoy. Then

and obtain, to order N,
P(By)= [ dyy™ B}

0222’)’: 04=4721 (A25)
2
as advertised above. X exg —N(By+27y)y’]
«BY (B +2y) N, (B7)
APPENDIX B: JOINT DISTRIBUTION
OF B; AND B, FOR B=2 which to order IN becomes
For broken time-reversal symmetry, the distributions of 2N
B, andB, have to be pa]culated from the Lagugrre ensemble P(By)= Lz exp(—2yN/B,). (B8)
[Eq. (8)] with B=2. Similarly as for preserved time-reversal BI
symmetry, this ensemble can be obtained from the eigenval-
ues of a matriXW'W. The matrixW is once more complex, The first steps in the calculation of the joint distribution
but no longer symmetri¢it is also not Hermitiah It has a  function of B; and B, are identical to what was done in
Gaussian distribution Appendix A, and result in the characteristic functip(p,q)
R in the form of Eq.(A6), but with v replaced by 3. Due to
P(W)ocexp(—2yN trW'W), (B1)  the unitary invariance of theV ensemble we can write
with measure a x 0 o
I x b y of
dwW=]] dReW,;dImW; . B2
) N N (B2 w=| 0 vy . (B9)
Y

It is instructive to calculat®(B,) first, because it will be
instrumental in the calculation &f(B,,B,). After averaging 0 O

over theu;’s, the characteristic function takes the form ) ] )
One now integrates ovgrandq and obtains delta functions

detw™w > ©3) as in Eq.(A10). This is followed by integration over. The

calculation is then much simplified by recognizing that one
can rescale the remaining integration variables in such a way

x(p)=<exp(—ip31)>=< Wi

H H 2_32 2_732 12
We express the determinant in the denominator as an integrdi@mely. by introducinga®=a"B; /By, x"=x"B1/By, y

over a complex vectaz. Due to the invarianc®/—UWVof ~ =Y'°Xx 2B, ?) that
P(W) for arbitrary unitary matricet) andV, we can turnz 3 5
in direction 1, and write P(B1,B2)=B; “exp(—NB1/B,)f(B;).  (B10)
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It is not necessary here to giiéB,) as a lengthy multidi-
mensional integral, since its functional form is easily recov- XocJ dzA1 exp[—22(1+|po|2/N2)[(YYT)2]11}
ered from the relation

2 Repop} |paf?
P(Bl)zfdeP(Bl,Bz)zN’ZBI“f(Bl). (B1Y) ><exp[%[\(\ﬂ]lfr le , (CH)

We compare this with EqB8), and arrive at Eq(41). The
distribution of B, has the closed-form expression where the average is now ov¥r Inverse Fourier transfor-

o303 o3 . mation with respect t@, andp, results in
P(B2)=7 “N"°Gzdy ‘N °By/—3,—-1,—-2).

(B12
exd —Z2[(YY")?
APPENDIX C: JOINT DISTRIBUTION OF C, AND C P(Co,Cy)= j dzZ2'® o =
‘ 0 ! (YYD = ([Y Y1102
We seek the joint distributions of the spectral moments IC42N2 N2
Cy and C4, which determine’ and| for =1 andn=m % _ -
via Eq. (29). We start with the characteristic function 472 472

X(Po,P1)=(exdi Re(poCo+p1C1)1), (Cy » |Co—[YY]14Cy/? (o)
" (YYDl (YY) [
wherepy andp; are complex numbers, as are the quantities
Cy andC, themselves. Sinc€k=2iui27r, we have to aver-
age over ther;’s and theu;’s. Averaging over they;’s first, The orthogonal invariance of Y™ allows us to param-
we obtain etrizeY as
-1/2
P17+ Pl
x(po,pl>=<ﬂ (1+'N—2 . (2 a v 0O
w b
We again regard the rates = ri’l as the eigenvalues of a Y= 0oy z| (C7)
matrix productY Y', whereY will be specified below. Then
the product of square roots can be written as a ratio of de- 0 0
terminants:
4p (2| 2 with real numbersy >0, w>0, y>0, a, andb, and an
I [ 1+ [P17i+ Pol® [(N—1)x (N+1)]-dimensional matrixZ. It is good to see
[ N?2 thatZ drops out of the calculation, because it does not appear
in
N2+ 2
=detYY' de{(YYT)Z#
N (YY1 =a%+0? (C8a
Repap* 5] -1/2
+2 pgpl YY + |p1l (C3
N N [(YYN?];=(a%+0v?)%+ (aw+vb)?+v2y% (C8b

We will express the determinant in the denominator as a
Gaussian integral overraal N-dimensional vector. Hence  We replaceb=b’—aw/v, and introduce’ =zyv. The inte-
it is convenient to choos¥ real as well, so that one can use gral over z' can be written in the saddle-point form
orthogonal invariance in order to tumin direction 1. More- fdz/z'Ne—Z’zf(z')ocf(M) for largeN. The resulting ex-

over, there is a representation ¥fwhich allows one to in-  pression varies with respect to the remaining variables on the
corporate the determinant in the numerator into the probabilscales

ity measure: We tak& as a rectangulaK X (N+3) matrix
with random Gaussian variables, distributed according to
N3a?=N%b'?=N%?=Ny’=w?’=0(y ). (C9
P(Y)xexp(—yNtrYYT). (C4

The corresponding distribution of the eigenvalygf YY'  We use the given orders of magnitude to eliminate terms of
is given in Ref[23], and differs from the Laguerre ensemble order N~?, but keep the residual correlations 8¢C%/yN

[Eq. (8)] by the additional factofl; u;=detY Y. In this rep- =O(N~?). The joint distribution function o, andC; is
resentation, then
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P(CO,Cl)ocf dadb/ dvv3dwwN~2dyyexd — yNy?] X(p)=f dxdy dzd?ad’bdYx|detY|*a[b—y2(Y 1))
xexg — yNw?| 1+ a_2 - l(z;2+y2+ b’?) —x2|%exp| — 2P exd —2%((|al?+x?)2+x?|a
v?]  2y? 4N?
Nuv2y?|Cq|?  N|Cy|? +b* |2+ x%y?)]exd — yN(|a|®+|b|?
Xex%szReCOC;_ vicl |20|}_ 2y Jexd ~ yN(lal+ o
+2x%+ 2y?+tr YTY)]. (D2)
(C10 . e _ . .
Let us briefly describe in which order the integrations are
Now we can integrate ovez, b’, w, andv, and arrive at performed most conveniently. Fourier transformation with
respect tq converts the characteristic function back into the
exfd — yNy?—N|Cy|?/2] distribution functionP(A,). This step gives rise to a factor
P(Co,Cy)er dy(y‘2+y2|Cl|2+2 ReC,C*)5? z 2 exp(—]A,/>N?z?). We can also integrate over which

(C11) results in a factor exp-2yN/(x2?]. We introduce new vari-
ables by the substitutions=b—a*, x=v/z, anda=a'/z.
The final result[Eq. (30)] is obtained by substituting  After these transformations one succeeds in integrating over
= yNy?. b’, z, anda’. The remaining integral over=|v| is of the
form
APPENDIX D: DISTRIBUTION OF A; FOR =1

In the largeN limit the joint distribution function P(Al)“|A1|75f dvv e

P(Aq,A))=P(Ap)P(A;) factorizes, as explained in Sec.
[Il E. The distribution ofA, is given in Eq.(37). It remains

to calculate the distribution oA;=3;7u;v;. Theuy;’s and X| [ 8|Aq|A(2+4v+v?) +3v?(16+ 16v +3v?)]
v;'s are independent Gaussian random numbers. Averaging
over them, we obtain the characteristic function 2|Aqlv
. — ——————[|A|*v*(288+ 304 — 25?)
_ lp7i|? ([Aq]*+0v%)
x(p)=(exdi RepAn ) =( [] | 1+ == 6 ,
i 4N +|A1|0%(192+ 1760 — 170?)
< def W'w)>2 > o1 +8|A,|8(6+4v—v?)+3v8(16+ 16v + 3v?)
= , D1
def (W'W)2+ |p|2/4N] +|A;|?08(192+ 208 + 41v?)]
where p is a complex number. The Laguerre ensemble is —[16/A|%(2+4v +v?)+6v2(16+ 160 +3v?)]
again represented as the eigenvalues of the matrix product
W'W, whereW is the complex symmetric matrix with dis- < arctan —— (D3)
tribution (A1). Following the route of Appendix A we rep- AL |

resent the determinant in the denominator by a Gaussian in-

tegral over a complex vect@; and choose a basis in which The more compact formiEg. (38)] is the result of the re-
W is of the form of Eq.(A8). The characteristic function is placementy = 2/s, followed by a number of partial integra-
then obtained as the following multidimensional integral: tions.
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